Update README.md
Browse files
README.md
CHANGED
|
@@ -27,152 +27,151 @@ datasets:
|
|
| 27 |
- nickrosh/Evol-Instruct-Code-80k-v1
|
| 28 |
- open-phi/textbooks
|
| 29 |
- open-phi/programming_books_llama
|
| 30 |
-
|
| 31 |
model-index:
|
| 32 |
- name: CrystalChat
|
| 33 |
results:
|
| 34 |
- task:
|
| 35 |
-
type: text-generation
|
| 36 |
dataset:
|
| 37 |
-
type: openai_humanneval
|
| 38 |
-
name: OpenAI HumanEval
|
| 39 |
metrics:
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
- task:
|
| 47 |
-
type: text-generation
|
| 48 |
dataset:
|
| 49 |
-
type: mbpp
|
| 50 |
-
name: Mostly Basic Python Problems (mbpp)
|
| 51 |
metrics:
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
- task:
|
| 60 |
-
type: multiple-choice
|
| 61 |
dataset:
|
| 62 |
-
type: race
|
| 63 |
-
name: RACE
|
| 64 |
metrics:
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
- task:
|
| 69 |
-
type: multiple-choice
|
| 70 |
dataset:
|
| 71 |
-
type: mmlu
|
| 72 |
-
name: Measuring Massive Multitask Language Understanding (MMLU)
|
| 73 |
metrics:
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
- task:
|
| 78 |
-
type: multiple-choice
|
| 79 |
dataset:
|
| 80 |
-
type: truthful_qa
|
| 81 |
-
name: Truthful QA
|
| 82 |
metrics:
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
- task:
|
| 87 |
-
type: multiple-choice
|
| 88 |
dataset:
|
| 89 |
-
type:
|
| 90 |
-
name:
|
| 91 |
metrics:
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
- task:
|
| 99 |
-
type: multiple-choice
|
| 100 |
dataset:
|
| 101 |
-
type:
|
| 102 |
-
name:
|
| 103 |
metrics:
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
- task:
|
| 108 |
-
type: text-classification
|
| 109 |
dataset:
|
| 110 |
-
type: boolq
|
| 111 |
-
name: Boolq
|
| 112 |
metrics:
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
- task:
|
| 117 |
-
type: question-answering
|
| 118 |
dataset:
|
| 119 |
-
type: openbookqa
|
| 120 |
-
name: Openbook QA
|
| 121 |
metrics:
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
- task:
|
| 126 |
-
type: multiple-choice
|
| 127 |
dataset:
|
| 128 |
-
type: hellaSwag
|
| 129 |
-
name: HellaSwag
|
| 130 |
metrics:
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
- task:
|
| 138 |
-
type: question-answering
|
| 139 |
dataset:
|
| 140 |
-
type: piqa
|
| 141 |
-
name: PIQA
|
| 142 |
metrics:
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
- task:
|
| 147 |
-
type: question-answering
|
| 148 |
dataset:
|
| 149 |
-
type: ai2_arc
|
| 150 |
-
name: ARC (Easy)
|
| 151 |
metrics:
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
- task:
|
| 156 |
-
type: question-answering
|
| 157 |
dataset:
|
| 158 |
-
type: ai2_arc
|
| 159 |
-
name: ARC (Challenge)
|
| 160 |
metrics:
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
- task:
|
| 168 |
-
type: text-generation
|
| 169 |
dataset:
|
| 170 |
-
type: gsm8k
|
| 171 |
-
name: GSM8K (Grade School Math 8K)
|
| 172 |
metrics:
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
---
|
| 177 |
|
| 178 |
# CrystalChat
|
|
|
|
| 27 |
- nickrosh/Evol-Instruct-Code-80k-v1
|
| 28 |
- open-phi/textbooks
|
| 29 |
- open-phi/programming_books_llama
|
| 30 |
+
- LLM360/CrystalCoderDatasets
|
| 31 |
model-index:
|
| 32 |
- name: CrystalChat
|
| 33 |
results:
|
| 34 |
- task:
|
| 35 |
+
type: text-generation
|
| 36 |
dataset:
|
| 37 |
+
type: openai_humanneval
|
| 38 |
+
name: OpenAI HumanEval
|
| 39 |
metrics:
|
| 40 |
+
- name: pass@1 (t=0.01)
|
| 41 |
+
type: pass@1
|
| 42 |
+
value: 31.707
|
| 43 |
+
- name: pass@10 (t=0.8)
|
| 44 |
+
type: pass@10
|
| 45 |
+
value: 65.755
|
| 46 |
- task:
|
| 47 |
+
type: text-generation
|
| 48 |
dataset:
|
| 49 |
+
type: mbpp
|
| 50 |
+
name: Mostly Basic Python Problems (mbpp)
|
| 51 |
metrics:
|
| 52 |
+
- name: pass@1 (t=0.01)
|
| 53 |
+
type: pass@1
|
| 54 |
+
value: 39.4
|
| 55 |
+
- name: pass@10 (t=0.8)
|
| 56 |
+
type: pass@10
|
| 57 |
+
value: 59.895
|
|
|
|
| 58 |
- task:
|
| 59 |
+
type: multiple-choice
|
| 60 |
dataset:
|
| 61 |
+
type: race
|
| 62 |
+
name: RACE
|
| 63 |
metrics:
|
| 64 |
+
- name: accuracy
|
| 65 |
+
type: accuracy
|
| 66 |
+
value: 41.148
|
| 67 |
- task:
|
| 68 |
+
type: multiple-choice
|
| 69 |
dataset:
|
| 70 |
+
type: mmlu
|
| 71 |
+
name: Measuring Massive Multitask Language Understanding (MMLU)
|
| 72 |
metrics:
|
| 73 |
+
- name: accuracy
|
| 74 |
+
type: accuracy
|
| 75 |
+
value: 52.789
|
| 76 |
- task:
|
| 77 |
+
type: multiple-choice
|
| 78 |
dataset:
|
| 79 |
+
type: truthful_qa
|
| 80 |
+
name: Truthful QA
|
| 81 |
metrics:
|
| 82 |
+
- name: accuracy
|
| 83 |
+
type: accuracy
|
| 84 |
+
value: 47.29
|
| 85 |
- task:
|
| 86 |
+
type: multiple-choice
|
| 87 |
dataset:
|
| 88 |
+
type: winogrande
|
| 89 |
+
name: Winogrande
|
| 90 |
metrics:
|
| 91 |
+
- name: accuracy (5 shot)
|
| 92 |
+
type: accuracy
|
| 93 |
+
value: 70.639
|
| 94 |
+
- name: accuracy (0 shot)
|
| 95 |
+
type: accuracy
|
| 96 |
+
value: 68.114
|
| 97 |
- task:
|
| 98 |
+
type: multiple-choice
|
| 99 |
dataset:
|
| 100 |
+
type: copa
|
| 101 |
+
name: COPA
|
| 102 |
metrics:
|
| 103 |
+
- name: accuracy
|
| 104 |
+
type: accuracy
|
| 105 |
+
value: 85
|
| 106 |
- task:
|
| 107 |
+
type: text-classification
|
| 108 |
dataset:
|
| 109 |
+
type: boolq
|
| 110 |
+
name: Boolq
|
| 111 |
metrics:
|
| 112 |
+
- name: accuracy
|
| 113 |
+
type: accuracy
|
| 114 |
+
value: 82.783
|
| 115 |
- task:
|
| 116 |
+
type: question-answering
|
| 117 |
dataset:
|
| 118 |
+
type: openbookqa
|
| 119 |
+
name: Openbook QA
|
| 120 |
metrics:
|
| 121 |
+
- name: accuracy
|
| 122 |
+
type: accuracy
|
| 123 |
+
value: 42
|
| 124 |
- task:
|
| 125 |
+
type: multiple-choice
|
| 126 |
dataset:
|
| 127 |
+
type: hellaSwag
|
| 128 |
+
name: HellaSwag
|
| 129 |
metrics:
|
| 130 |
+
- name: accuracy (10-shot)
|
| 131 |
+
type: accuracy
|
| 132 |
+
value: 76.12
|
| 133 |
+
- name: accuracy (0-shot)
|
| 134 |
+
type: accuracy
|
| 135 |
+
value: 73.312
|
| 136 |
- task:
|
| 137 |
+
type: question-answering
|
| 138 |
dataset:
|
| 139 |
+
type: piqa
|
| 140 |
+
name: PIQA
|
| 141 |
metrics:
|
| 142 |
+
- name: accuracy
|
| 143 |
+
type: accuracy
|
| 144 |
+
value: 77.856
|
| 145 |
- task:
|
| 146 |
+
type: question-answering
|
| 147 |
dataset:
|
| 148 |
+
type: ai2_arc
|
| 149 |
+
name: ARC (Easy)
|
| 150 |
metrics:
|
| 151 |
+
- name: accuracy
|
| 152 |
+
type: accuracy
|
| 153 |
+
value: 70.328
|
| 154 |
- task:
|
| 155 |
+
type: question-answering
|
| 156 |
dataset:
|
| 157 |
+
type: ai2_arc
|
| 158 |
+
name: ARC (Challenge)
|
| 159 |
metrics:
|
| 160 |
+
- name: accuracy (25-shot)
|
| 161 |
+
type: accuracy
|
| 162 |
+
value: 51.706
|
| 163 |
+
- name: accuracy (0-shot)
|
| 164 |
+
type: accuracy
|
| 165 |
+
value: 44.625
|
| 166 |
- task:
|
| 167 |
+
type: text-generation
|
| 168 |
dataset:
|
| 169 |
+
type: gsm8k
|
| 170 |
+
name: GSM8K (Grade School Math 8K)
|
| 171 |
metrics:
|
| 172 |
+
- name: Accuracy (5 shot)
|
| 173 |
+
type: accuracy
|
| 174 |
+
value: 28.052
|
| 175 |
---
|
| 176 |
|
| 177 |
# CrystalChat
|