--- license: apache-2.0 base_model: - Qwen/Qwen3-Coder-480B-A35B-Instruct --- ## Model Details This model is a mixed int4 model with group_size 64 and symmetric quantization of [Qwen/Qwen3-Coder-480B-A35B-Instruct](https://huggingface.co/Qwen/Qwen3-Coder-480B-A35B-Instruct) generated by [intel/auto-round](https://github.com/intel/auto-round) via **RTN** (no algorithm tuning). Non expert layers fallback to 8 bits and group_size 128. mlp.gate layers fallback to 16 bits to ensure runing successfully on vLLM. Please follow the license of the original model. ## How To Use **vLLM usage** ~~~bash vllm serve Intel/Qwen3-Coder-480B-A35B-Instruct-int4-mixed-ar --tensor-parallel-size 4 --max-model-len 65536 ~~~ **INT4 Inference on CPU/Intel GPU/CUDA** ~~~python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Intel/Qwen3-Coder-480B-A35B-Instruct-int4-mixed-ar" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) prompts = [ "Write a quick sort algorithm.", "Write a flappy bird.", "Write a llm quantization algorithm.", ] texts = [] for prompt in prompts: messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) texts.append(text) inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, padding_side="left").to(model.device) # conduct text completion outputs = model.generate( **inputs, max_new_tokens=65536, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs["input_ids"], outputs) ] decoded_outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) for i, prompt in enumerate(prompts): input_id = inputs print(f"Prompt: {prompt}") print(f"Generated: {decoded_outputs[i]}") print("-" * 50) ~~~ ### Generate the model Here is the sample command to reproduce the model ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig from auto_round import AutoRound model_name = "Qwen/Qwen3-Coder-480B-A35B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_name, device_map="cpu", torch_dtype="auto") tokenizer = AutoTokenizer.from_pretrained(model_name) layer_config = {} for n, m in model.named_modules(): if "mlp.gate" in n: ## vllm only support 16 bit for this layer layer_config[n] = {"bits": 16} elif isinstance(m, torch.nn.Linear) and (not "expert" in n or "shared_experts" in n) and n != "lm_head": layer_config[n] = {"bits": 8, "group_size": 128} autoround = AutoRound(model, tokenizer, iters=0, group_size=64, layer_config=layer_config) output_dir = "/dataset/Qwen3-Coder-480B-A35B-Instruct-int4-mixed" autoround.quantize_and_save(output_dir) ## tricky code to handle qkv fusing issue, we will fix it in vllm later import os import json config_path = os.path.join(output_dir, "config.json") with open(config_path, "r") as file: config = json.load(file) extra_config = config["quantization_config"]["extra_config"] num_hidden_layers = config["num_hidden_layers"] for i in range(num_hidden_layers): qkv_name = f"model.layers.{str(i)}.self_attn.qkv_proj" extra_config[qkv_name] = {"bits": 8, "group_size": 128} with open(config_path, "w") as file: json.dump(config, file, indent=2) ``` ## Ethical Considerations and Limitations The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs. Therefore, before deploying any applications of the model, developers should perform safety testing. ## Caveats and Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. Here are a couple of useful links to learn more about Intel's AI software: - Intel Neural Compressor [link](https://github.com/intel/neural-compressor) ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please consult an attorney before using this model for commercial purposes. ## Cite @article{cheng2023optimize, title={Optimize weight rounding via signed gradient descent for the quantization of llms}, author={Cheng, Wenhua and Zhang, Weiwei and Shen, Haihao and Cai, Yiyang and He, Xin and Lv, Kaokao and Liu, Yi}, journal={arXiv preprint arXiv:2309.05516}, year={2023} } [arxiv](https://arxiv.org/abs/2309.05516) [github](https://github.com/intel/auto-round)