Update README.md
Browse files
README.md
CHANGED
|
@@ -13,4 +13,190 @@ tags:
|
|
| 13 |
- medical
|
| 14 |
- summary
|
| 15 |
- endocronology
|
| 16 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- medical
|
| 14 |
- summary
|
| 15 |
- endocronology
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Llama3.2-Medical-Notes-1B-ONNX
|
| 19 |
+
|
| 20 |
+
This is the ONNX quantized version of the [Llama3.2-Medical-Notes-1B](https://huggingface.co/GetSoloTech/Llama3.2-Medical-Notes-1B) model, optimized for efficient inference and deployment.
|
| 21 |
+
|
| 22 |
+
## Model Details
|
| 23 |
+
|
| 24 |
+
- **Base Model:** [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct)
|
| 25 |
+
- **Fine-tuning Method:** PEFT (Parameter-Efficient Fine-Tuning) using LoRA
|
| 26 |
+
- **Training Framework:** Unsloth library for accelerated fine-tuning and merging
|
| 27 |
+
- **Quantization:** ONNX format for optimized inference
|
| 28 |
+
- **Task:** Text Generation (specifically, generating structured SOAP notes)
|
| 29 |
+
|
| 30 |
+
## Paper
|
| 31 |
+
|
| 32 |
+
- [arXiv: 2507.03033](https://arxiv.org/abs/2507.03033)
|
| 33 |
+
- [medRxiv: 10.1101/2025.07.01.25330679v1](https://www.medrxiv.org/content/10.1101/2025.07.01.25330679v1)
|
| 34 |
+
|
| 35 |
+
## Intended Use
|
| 36 |
+
|
| 37 |
+
**Input:** Free-text medical transcripts (doctor-patient conversations or dictated notes).
|
| 38 |
+
|
| 39 |
+
**Output:** Structured medical notes with clearly defined sections (Demographics, Presenting Illness, History, etc.).
|
| 40 |
+
|
| 41 |
+
## Usage with ONNX Runtime
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
import onnxruntime as ort
|
| 45 |
+
from transformers import AutoTokenizer
|
| 46 |
+
import numpy as np
|
| 47 |
+
|
| 48 |
+
# Load the ONNX model
|
| 49 |
+
model_name = "GetSoloTech/Llama3.2-Medical-Notes-1B-ONNX"
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained("GetSoloTech/Llama3.2-Medical-Notes-1B")
|
| 51 |
+
|
| 52 |
+
# Initialize ONNX Runtime session
|
| 53 |
+
session = ort.InferenceSession(onnx_file_path)
|
| 54 |
+
|
| 55 |
+
SYSTEM_PROMPT = """Convert the following medical transcript to a structured medical note.
|
| 56 |
+
|
| 57 |
+
Use these sections in this order:
|
| 58 |
+
|
| 59 |
+
1. Demographics
|
| 60 |
+
- Name, Age, Sex, DOB
|
| 61 |
+
|
| 62 |
+
2. Presenting Illness
|
| 63 |
+
- Bullet point statements of the main problem and duration.
|
| 64 |
+
|
| 65 |
+
3. History of Presenting Illness
|
| 66 |
+
- Chronological narrative: symptom onset, progression, modifiers, associated factors.
|
| 67 |
+
|
| 68 |
+
4. Past Medical History
|
| 69 |
+
- List chronic illnesses and past medical diagnoses mentioned in the transcript. Do not include surgeries.
|
| 70 |
+
|
| 71 |
+
5. Surgical History
|
| 72 |
+
- List prior surgeries with year if known, as mentioned in the transcript.
|
| 73 |
+
|
| 74 |
+
6. Family History
|
| 75 |
+
- Relevant family history mentioned in the transcript.
|
| 76 |
+
|
| 77 |
+
7. Social History
|
| 78 |
+
- Occupation, tobacco/alcohol/drug use, exercise, living situation if mentioned in the transcript.
|
| 79 |
+
|
| 80 |
+
8. Allergy History
|
| 81 |
+
- Drug, food, or environmental allergies and reactions, if mentioned in the transcript.
|
| 82 |
+
|
| 83 |
+
9. Medication History
|
| 84 |
+
- List medications the patient is already taking. Do not include any new or proposed drugs in this section.
|
| 85 |
+
|
| 86 |
+
10. Dietary History
|
| 87 |
+
- If unrelated, write "Not applicable"; otherwise, summarize the diet pattern.
|
| 88 |
+
|
| 89 |
+
11. Review of Systems
|
| 90 |
+
- Head-to-toe, alphabetically ordered bullet points; include both positives and pertinent negatives as mentioned in the transcript.
|
| 91 |
+
|
| 92 |
+
12. Physical Exam Findings
|
| 93 |
+
- Vital Signs (BP, HR, RR, Temp, SpO₂, HT, WT, BMI) if mentioned in the transcript.
|
| 94 |
+
- Structured by system: General, HEENT, Cardiovascular, Respiratory, Abdomen, Neurological, Musculoskeletal, Skin, Psychiatric—as mentioned in the transcript.
|
| 95 |
+
|
| 96 |
+
13. Labs and Imaging
|
| 97 |
+
- Summarize labs and imaging results.
|
| 98 |
+
|
| 99 |
+
14. ASSESSMENT
|
| 100 |
+
- Provide a brief summary of the clinical assessment or diagnosis based on the information in the transcript.
|
| 101 |
+
|
| 102 |
+
15. PLAN
|
| 103 |
+
- Outline the proposed management plan, including treatments, medications, follow-up, and patient instructions as discussed.
|
| 104 |
+
|
| 105 |
+
Please use only the information present in the transcript. If an information is not mentioned or not applicable, state "Not applicable." Format each section clearly with its heading.
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
def generate_structured_note_onnx(transcript):
|
| 109 |
+
message = [
|
| 110 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
| 111 |
+
{"role": "user", "content": f"<START_TRANSCRIPT>\n{transcript}\n<END_TRANSCRIPT>\n"},
|
| 112 |
+
]
|
| 113 |
+
|
| 114 |
+
# Apply chat template
|
| 115 |
+
inputs = tokenizer.apply_chat_template(
|
| 116 |
+
message,
|
| 117 |
+
tokenize=True,
|
| 118 |
+
add_generation_prompt=True,
|
| 119 |
+
return_tensors="pt",
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Convert to numpy for ONNX inference
|
| 123 |
+
input_ids = inputs.numpy()
|
| 124 |
+
|
| 125 |
+
# Run inference with ONNX Runtime
|
| 126 |
+
outputs = session.run(
|
| 127 |
+
None,
|
| 128 |
+
{"input_ids": input_ids}
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# Process outputs and generate text
|
| 132 |
+
# Note: This is a simplified example. You may need to implement proper text generation logic
|
| 133 |
+
|
| 134 |
+
return "Generated structured medical note..."
|
| 135 |
+
|
| 136 |
+
# Example usage
|
| 137 |
+
transcript = "Patient is a 45-year-old male presenting with chest pain for the past 2 days..."
|
| 138 |
+
note = generate_structured_note_onnx(transcript)
|
| 139 |
+
print("\n--- Generated Response ---")
|
| 140 |
+
print(note)
|
| 141 |
+
print("---------------------------")
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
## Alternative Usage with Transformers (Original Model)
|
| 145 |
+
|
| 146 |
+
If you prefer to use the original model instead of the ONNX version:
|
| 147 |
+
|
| 148 |
+
```python
|
| 149 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 150 |
+
|
| 151 |
+
model_name = "GetSoloTech/Llama3.2-Medical-Notes-1B"
|
| 152 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 153 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
|
| 154 |
+
|
| 155 |
+
def generate_structured_note(transcript):
|
| 156 |
+
message = [
|
| 157 |
+
{"role": "system", "content": SYSTEM_PROMPT},
|
| 158 |
+
{"role": "user", "content": f"<START_TRANSCRIPT>\n{transcript}\n<END_TRANSCRIPT>\n"},
|
| 159 |
+
]
|
| 160 |
+
|
| 161 |
+
inputs = tokenizer.apply_chat_template(
|
| 162 |
+
message,
|
| 163 |
+
tokenize=True,
|
| 164 |
+
add_generation_prompt=True,
|
| 165 |
+
return_tensors="pt",
|
| 166 |
+
).to(model.device)
|
| 167 |
+
|
| 168 |
+
outputs = model.generate(
|
| 169 |
+
input_ids=inputs,
|
| 170 |
+
max_new_tokens=2048,
|
| 171 |
+
temperature=0.2,
|
| 172 |
+
top_p=0.85,
|
| 173 |
+
min_p=0.1,
|
| 174 |
+
top_k=20,
|
| 175 |
+
do_sample=True,
|
| 176 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 177 |
+
use_cache=True,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
input_token_len = len(inputs[0])
|
| 181 |
+
generated_tokens = outputs[:, input_token_len:]
|
| 182 |
+
note = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
| 183 |
+
if "<START_NOTES>" in note:
|
| 184 |
+
note = note.split("<START_NOTES>")[-1].strip()
|
| 185 |
+
if "<END_NOTES>" in note:
|
| 186 |
+
note = note.split("<END_NOTES>")[0].strip()
|
| 187 |
+
return note
|
| 188 |
+
```
|
| 189 |
+
|
| 190 |
+
## Performance Benefits
|
| 191 |
+
|
| 192 |
+
The ONNX version provides:
|
| 193 |
+
- **Faster inference** through optimized runtime
|
| 194 |
+
- **Reduced memory footprint** through quantization
|
| 195 |
+
- **Cross-platform compatibility** for deployment
|
| 196 |
+
- **Production-ready** inference capabilities
|
| 197 |
+
|
| 198 |
+
## Requirements
|
| 199 |
+
|
| 200 |
+
- `onnxruntime` for ONNX inference
|
| 201 |
+
- `transformers` for tokenization
|
| 202 |
+
- `numpy` for array operations
|