| { | |
| "architecture_plans": { | |
| "arch_class_name": "ResEncL", | |
| "arch_kwargs": null, | |
| "arch_kwargs_requiring_import": null | |
| }, | |
| "pretrain_plan": { | |
| "dataset_name": "Dataset745_OpenNeuro_v2", | |
| "plans_name": "nnsslPlans", | |
| "original_median_spacing_after_transp": [ | |
| 1, | |
| 1, | |
| 1 | |
| ], | |
| "image_reader_writer": "SimpleITKIO", | |
| "transpose_forward": [ | |
| 0, | |
| 1, | |
| 2 | |
| ], | |
| "transpose_backward": [ | |
| 0, | |
| 1, | |
| 2 | |
| ], | |
| "configurations": { | |
| "onemmiso": { | |
| "data_identifier": "nnsslPlans_3d_fullres", | |
| "preprocessor_name": "DefaultPreprocessor", | |
| "spacing_style": "onemmiso", | |
| "normalization_schemes": [ | |
| "ZScoreNormalization" | |
| ], | |
| "use_mask_for_norm": [ | |
| false | |
| ], | |
| "resampling_fn_data": "resample_data_or_seg_to_shape", | |
| "resampling_fn_data_kwargs": { | |
| "is_seg": false, | |
| "order": 3, | |
| "order_z": 0, | |
| "force_separate_z": null | |
| }, | |
| "resampling_fn_mask": "resample_data_or_seg_to_shape", | |
| "resampling_fn_mask_kwargs": { | |
| "is_seg": true, | |
| "order": 1, | |
| "order_z": 0, | |
| "force_separate_z": null | |
| }, | |
| "spacing": [ | |
| 1, | |
| 1, | |
| 1 | |
| ], | |
| "patch_size": [ | |
| 160, | |
| 160, | |
| 160 | |
| ] | |
| } | |
| }, | |
| "experiment_planner_used": "FixedResEncUNetPlanner" | |
| }, | |
| "pretrain_num_input_channels": 1, | |
| "recommended_downstream_patchsize": [ | |
| 160, | |
| 160, | |
| 160 | |
| ], | |
| "key_to_encoder": "encoder.stages", | |
| "key_to_stem": "encoder.stem", | |
| "keys_to_in_proj": [ | |
| "encoder.stem.convs.0.conv", | |
| "encoder.stem.convs.0.all_modules.0" | |
| ], | |
| "key_to_lpe": null, | |
| "citations": [ | |
| { | |
| "type": "Architecture", | |
| "name": "ResEncL", | |
| "apa_citations": [ | |
| "Isensee, F., Wald, T., Ulrich, C., Baumgartner, M., Roy, S., Maier-Hein, K., & Jaeger, P. F. (2024, October). nnu-net revisited: A call for rigorous validation in 3d medical image segmentation. MICCAI." | |
| ] | |
| }, | |
| { | |
| "type": "Pretraining Method", | |
| "name": "Models Genesis", | |
| "apa_citations": [ | |
| "Zhou, Z., Sodha, V., Pang, J., Gotway, M. B., & Liang, J. (2021). Models genesis. Medical image analysis (MIA)." | |
| ] | |
| }, | |
| { | |
| "type": "Pre-Training Dataset", | |
| "name": "OpenMind", | |
| "apa_citations": [ | |
| "Wald, T., Ulrich, C., Suprijadi, J., Ziegler, S., Nohel, M., Peretzke, R., ... & Maier-Hein, K. H. (2024). An OpenMind for 3D medical vision self-supervised learning. arXiv preprint arXiv:2412.17041." | |
| ] | |
| }, | |
| { | |
| "type": "Framework", | |
| "name": "nnssl", | |
| "apa_citations": [ | |
| "Wald, T., Ulrich, C., Lukyanenko, S., Goncharov, A., Paderno, A., Maerkisch, L., ... & Maier-Hein, K. (2024). Revisiting MAE pre-training for 3D medical image segmentation. CVPR." | |
| ] | |
| } | |
| ], | |
| "trainer_name": "ModelGenesisTrainer_BS8" | |
| } |