SuperResolution / python /gradio_demo.py
wli1995's picture
Upload gradio demo
a021116 verified
import gradio as gr
import cv2
import numpy as np
import os
import tempfile
import time
import axengine as axe
import common
import imgproc
rgb_range=255
scale=2
def from_numpy(x):
return x if isinstance(x, np.ndarray) else np.array(x)
def quantize(img, rgb_range):
pixel_range = 255 / rgb_range
return np.round(np.clip(img * pixel_range, 0, 255)) / pixel_range
# 初始化EDSR和ESPCN模型
def init_SRmodel(EDSR_path="../model_convert/axmodel/edsr_baseline_x2_1.axmodel",
ESPCN_path="../model_convert/axmodel/espcn_x2_T9.axmodel"):
EDSR_session = axe.InferenceSession(EDSR_path)
ESPCN_session = axe.InferenceSession(ESPCN_path)
return [EDSR_session, ESPCN_session]
SR_sessions=init_SRmodel()
def EDSR_infer(frame, EDSR_session=SR_sessions[0]):
output_names = [x.name for x in EDSR_session.get_outputs()]
input_name = EDSR_session.get_inputs()[0].name
lr_y_image, = common.set_channel(frame, n_channels=3)
lr_y_image, = common.np_prepare(lr_y_image, rgb_range=rgb_range)
sr = EDSR_session.run(output_names, {input_name: lr_y_image})
if isinstance(sr, (list, tuple)):
sr = from_numpy(sr[0]) if len(sr) == 1 else [from_numpy(x) for x in sr]
else:
sr = from_numpy(sr)
sr = quantize(sr, rgb_range).squeeze(0)
normalized = sr * 255 / rgb_range
ndarr = normalized.transpose(1, 2, 0).astype(np.uint8)
return ndarr
def ESPCN_infer(frame, ESPCN_session=SR_sessions[1]):
output_names = [x.name for x in ESPCN_session.get_outputs()]
input_name = ESPCN_session.get_inputs()[0].name
lr_y_image, lr_cb_image, lr_cr_image = imgproc.preprocess_one_frame(frame)
bic_cb_image = cv2.resize(lr_cb_image,
(int(lr_cb_image.shape[1] * scale),
int(lr_cb_image.shape[0] * scale)),
interpolation=cv2.INTER_CUBIC)
bic_cr_image = cv2.resize(lr_cr_image,
(int(lr_cr_image.shape[1] * scale),
int(lr_cr_image.shape[0] * scale)),
interpolation=cv2.INTER_CUBIC)
sr = ESPCN_session.run(output_names, {input_name: lr_y_image})
if isinstance(sr, (list, tuple)):
sr = from_numpy(sr[0]) if len(sr) == 1 else [from_numpy(x) for x in sr]
else:
sr = from_numpy(sr)
ndarr = imgproc.array_to_image(sr)
sr_y_image = ndarr.astype(np.float32) / 255.0
sr_ycbcr_image = cv2.merge([sr_y_image[:, :, 0], bic_cb_image, bic_cr_image])
sr_image = imgproc.ycbcr_to_bgr(sr_ycbcr_image)
sr_image = np.clip(sr_image* 255.0, 0 , 255).astype(np.uint8)
return sr_image
# ======================
# 模拟超分辨率模型
# ======================
def EDSR_MODEL(input_data, is_video=False):
if is_video:
output_frames = []
for frame in input_data:
out = EDSR_infer(frame=frame)
output_frames.append(out)
return output_frames
else:
out = EDSR_infer(frame=input_data)
return out
def ESPCN_MODEL(input_data, is_video=False):
if is_video:
output_frames = []
for frame in input_data:
out = ESPCN_infer(frame=frame)
output_frames.append(out)
return output_frames
else:
out = ESPCN_infer(frame=input_data)
return out
# ======================
# 全局状态(单用户)
# ======================
class AppState:
def __init__(self):
self.original_img = None # 原始图(BGR, 高分辨率)
self.sr_img = None # 超分图(BGR, 高分辨率)
self.is_video = False
app_state = AppState()
# ======================
# 核心处理函数
# ======================
def process_super_resolution(input_file, model_choice):
global app_state
if input_file is None:
raise gr.Error("请先上传图片或视频!")
file_path = input_file
app_state = AppState()
info_text = ""
is_video = any(ext in file_path.lower() for ext in ['.mp4', '.avi', '.mov', '.mkv'])
if is_video:
# --- 视频处理(直接保存高分辨率)---
cap = cv2.VideoCapture(file_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
info_text += f"🎬 视频信息:\n- 总帧数: {total_frames}\n- 帧率: {fps:.2f} FPS\n"
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
cap.release()
model_func = EDSR_MODEL if model_choice == "EDSR_MODEL" else ESPCN_MODEL
start_time = time.time()
output_data = model_func(frames, is_video=True)
infer_time = time.time() - start_time
info_text += f"\n⏱️ 推理时间: {infer_time:.2f} 秒\n"
full_video_path = os.path.join(tempfile.gettempdir(), f"sr_video_x2.mp4")
h_out, w_out = output_data[0].shape[:2]
info_text += f"- 超分后尺寸: {w_out} x {h_out}\n"
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out_video = cv2.VideoWriter(full_video_path, fourcc, fps, (w_out, h_out))
for frame in output_data:
out_video.write(frame)
out_video.release()
app_state.is_video = True
return (
gr.update(value=None, visible=False), # image_display
gr.update(visible=False), # btn_original
gr.update(visible=False), # btn_sr
gr.update(value="当前: 无", visible=False),
gr.update(value=full_video_path, visible=True),
gr.update(value=full_video_path, visible=True),
gr.update(visible=False),
info_text
)
else:
# --- 图片处理(保存原始高分辨率)---
img = cv2.imread(file_path)
if img is None:
raise gr.Error("无法读取图片!")
h, w = img.shape[:2]
info_text += f"🖼️ 图片信息:\n- 原始尺寸: {w} x {h}\n"
app_state.original_img = img.copy()
model_func = EDSR_MODEL if model_choice == "EDSR_MODEL" else ESPCN_MODEL
start_time = time.time()
sr_img = model_func(img, is_video=False)
infer_time = time.time() - start_time
info_text += f"\n⏱️ 推理时间: {infer_time:.2f} 秒\n"
h_out, w_out = sr_img.shape[:2]
info_text += f"- 超分后尺寸: {w_out} x {h_out}\n"
sr_img_path = os.path.join(tempfile.gettempdir(), f"sr_image_x2.png")
cv2.imwrite(sr_img_path, sr_img)
app_state.sr_img = sr_img
app_state.is_video = False
# 默认显示原图(高分辨率,但 UI 会限制尺寸)
return (
gr.update(value=app_state.original_img[:, :, ::-1], visible=True), # BGR→RGB
gr.update(visible=True),
gr.update(visible=True),
gr.update(value="当前: 原图", visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(value=sr_img_path, visible=True),
info_text
)
# ======================
# 切换显示函数(直接使用原始高分辨率图)
# ======================
def show_original():
if app_state.original_img is None:
return gr.update(), gr.update()
# OpenCV BGR → RGB
rgb_img = app_state.original_img[:, :, ::-1]
return gr.update(value=rgb_img), gr.update(value="当前: 原图")
def show_sr():
if app_state.sr_img is None:
return gr.update(), gr.update()
rgb_img = app_state.sr_img[:, :, ::-1]
return gr.update(value=rgb_img), gr.update(value="当前: 超分图")
# ======================
# Gradio UI
# ======================
with gr.Blocks(title="超分辨率可视化工具", theme=gr.themes.Soft()) as demo:
gr.Markdown("## 🚀 超分辨率模型效果可视化")
gr.Markdown("上传图片或视频,选择模型,点击箭头切换原图/超分图!")
input_file = gr.File(
label="📂 上传图片或视频",
file_types=["image", "video"],
file_count="single"
)
with gr.Row():
model_choice = gr.Radio(
choices=["EDSR_MODEL", "ESPCN_MODEL"],
value="EDSR_MODEL",
label="🔍 选择超分辨率模型"
)
run_btn = gr.Button("🚀 开始超分", variant="primary")
# 图片区:硬性限定尺寸,直接显示原始高分辨率图
with gr.Column(visible=False) as image_section:
image_label = gr.Textbox(value="当前: 原图", interactive=False, lines=1)
image_display = gr.Image(
label="🖼️ 图像显示",
width=800, # 👈 固定宽度
height=600 # 👈 固定高度
)
with gr.Row():
btn_original = gr.Button("◀ 原图")
btn_sr = gr.Button("超分图 ▶")
# 视频区:硬性限定高度
output_video_player = gr.Video(
label="▶️ 超分视频(高分辨率)",
visible=False,
height=450 # 宽度自适应,高度固定
)
with gr.Row():
download_image = gr.File(label="📥 下载超分图片(原图)", visible=False)
download_video = gr.File(label="📥 下载超分视频(完整分辨率)", visible=False)
info_box = gr.Textbox(label="📊 处理信息", lines=6, interactive=False)
run_btn.click(
fn=process_super_resolution,
inputs=[input_file, model_choice],
outputs=[
image_display,
btn_original,
btn_sr,
image_label,
output_video_player,
download_video,
download_image,
info_box
]
)
btn_original.click(show_original, outputs=[image_display, image_label])
btn_sr.click(show_sr, outputs=[image_display, image_label])
def toggle_ui(file):
if file is None:
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
)
if any(ext in file.lower() for ext in ['.mp4', '.avi', '.mov', '.mkv']):
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True)
)
else:
return (
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False)
)
input_file.change(
fn=toggle_ui,
inputs=input_file,
outputs=[
image_section,
download_image,
output_video_player,
download_video
]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)